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ABSTRACT

Permafrost peatlands are both an important source of atmospheric CH4 and a substantial sink for atmospheric CO2.
Climate change can affect this balance, with higher temperatures resulting in the conversion of permafrost soils to
wetlands and associated accelerated mineralisation and increased CH4 emission. To better understand the impact
of such processes on methanogen populations, we investigated the anaerobic decay of soil carbon in a low Arctic,
discontinuous permafrost peatland. Cores were collected monthly from sedge and Sphagnum mires in north Sweden
during the summer of 2006. We determined CH4 concentrations and production potentials, together with variations in
the size of the methanogenic community as indicated by concentrations of archaeal lipid biomarkers (phosphorylated
archaeol, archaeol and hydroxyarchaeol). Concentrations of methanogen biomarkers generally were higher at the
sedge site, increased with depth for all sites and months, and were usually below the detection limits in shallow
(<10 cm) Sphagnum peat. The distribution of biomarkers reflects the strong influence of water table depth on
anaerobic conditions and methanogen populations, while differences in biomarker concentrations can be explained
by differences in vegetation cover and pH. However, methanogen populations inferred from biomarker data show
a decoupling from in-situ CH4 production over the season and from CH4 production potential, suggesting that other
factors such as the availability of labile organic substrates can influence methanogen abundance. Archaeal lipid
biomarkers appear to offer a potential new means to investigate permafrost biogeochemical processes but the
interpretation of signals remains complex. Copyright © 2014 John Wiley & Sons, Ltd.
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INTRODUCTION

Permafrost in northern peatlands is undergoing substantial
changes due to increasing global air temperatures (IPCC,
2014). In some Arctic regions, the active layer, which thaws
during summer, has thickened since 1970 (Christensen
et al., 2004), and complete thawing of permafrost has
been reported in many locations (Turetsky et al., 2002;
Johansson et al., 2006; Wu and Zhang, 2010; Callaghan
et al., 2010). The results of permafrost degradation are
spatially and regionally variable, with impacts including
subsidence, lowering or raising of the soil water table
(Brown et al., 2000; Hinzman et al., 2003), thermokarst
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erosion (Hinzman et al., 1997; Plug et al., 2008; Pohl
et al., 2009), increased or decreased soil organic matter
decomposition rates (Oberbauer et al., 1996; Hobbie et al.,
2000; Scanlon and Moore, 2000) and changes in plant
communities (Svensson et al., 1999; Christensen et al.,
2004; Schuur et al., 2007). In northern peatlands, plant
composition, temperature and water table level are the main
factors affecting CH4 emissions (Valentine et al., 1994;
Schimel et al., 1996; Waddington et al., 1996; Bellisario
et al., 1999; Frenzel and Karofeld, 2000). A detailed study
at a site in Abisko, northern Sweden, has shown that the
thaw of permafrost and subsequent vegetation change has
increased landscape-scale CH4 emissions by 22 to 66 per
cent over the period 1970–2000 (Christensen et al., 2004).

Many studies of northern wetlands have considered
ecosystem-scale differences in CH4 production (Valentine
et al., 1994; Bergman et al., 1998, 2000; Whalen and
Reeburgh, 2000; Yavitt et al., 2005) and CH4 oxidation
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(Whalen and Reeburgh, 2000; Wagner et al., 2005; Liebner
and Wagner, 2007). Key processes in the CH4 cycle are
largely carried out by highly specialised methanogenic
Archaea and CH4-oxidising bacteria, although other micro-
organisms are essential for mediating substrate supply to the
methanogens (Winter and Knoll, 1989). Recent work has
shown that methanogenic Archaea and CH4-oxidising bac-
teria exist in permafrost soils in numbers comparable to
those in temperate soil environments (Kobabe et al., 2004;
Liebner and Wagner, 2007; Barbier et al., 2012). In this
context, it is worthwhile to evaluate methanogen
abundance and understand its relationship with CH4

concentration, production or active layer geochemistry.
Although some studies have examined the methanogen
and bacterial populations in northern peatlands using micro-
biological techniques (Metje et al., 2005, 2007; Rivkina
et al., 2007; Barbier et al., 2012), there have been relatively
few biomarker-based investigations (Wagner et al., 2005,
2007; Pancost et al., 2011; Bischoff et al., 2013).
In this study, the permafrost methanogen population was

investigated in sites with different plant compositions
through the use of the archaeal diether lipid biomarkers,
phosphorylated archaeol, archaeol and hydroxyarchaeol.
These archaeal lipids, or their intact polar lipid (IPL)
analogues, have been identified in soils (Asakawa et al.,
1998; Bai et al., 2000; Fritze et al., 1999), wetlands (Fritze
et al., 1999), lakes (Franzmann et al., 1992; Schouten et al.,
2001) and permafrost (Wagner et al., 2005, 2007; Bischoff
et al., 2013). Thus, the primary aims of this study are: (1) to
determine if archaeal lipids, both intact or partly degraded
forms, are present in the discontinuous permafrost zone
of two contrasting peatlands (minerotrophic sedge and
Sphagnum mires) of the Swedish Arctic; (2) to examine
how their concentrations vary among sites, with depth at
individual sites, and during early, mid- and late summer;
and (3) to compare archaeal lipid profiles to soil CH4

concentration and production potential.
MATERIAL AND METHODS

Field Site Description

The study area is located in the Stordalen sub-Arctic mire
complex near Abisko on the south shore of Lake
Torneträsk, northern Sweden (68°21’N, 18°49’E), approxi-
mately 200 km north of the Arctic Circle and 385m asl
(Figure 1). The average annual air temperature during the
period 2004–06 was 1.1 °C and the average total annual pre-
cipitation was 612mm. Winter precipitation is mainly snow,
with a mean snow depth of 18 cm for the period 2004–06.
The Stordalen mire covers 25 ha and is a typical sub-Arctic
tundra environment characterised by discontinuous perma-
frost with small-scale (~2m) variations in topography
consisting of wet minerotrophic depressions, elevated areas
with a micro-relief pattern of hummocks and small
ombrotrophic depressions, and streams carrying water to
Copyright © 2014 John Wiley & Sons, Ltd.
and from the complex. The sub-habitats differ in their
nutrients, moisture conditions and plant assemblages. We
studied a sedge and a Sphagnum mire site, which constitute
2 (12%) and 8.3 (49%) ha, respectively, of the mire com-
plex, with the remaining area consisting of ombrotrophic
bogs, open water and bare rock (Figure 1; Johansson et al.,
2006). The ombrotrophic bog was excluded in this study
because of its lack of a water table and negligible CH4

emissions.
Climate records from the Abisko Research Station

indicate that the annual mean air temperature in the region
increased by 2.5 °C from 1913 to 2006 (Bäckstrand et al.,
2008; Callaghan et al., 2010), which led to a deeper active
layer and permafrost disappearance in some areas of
Stordalen (Åkerman and Johansson, 2008).

The dominant plant species in the sedge mire site is the
cottongrass Eriophorum angustifolium. The site was
underlain by seasonally frozen ground at the time of the first
sampling in June 2006 (at 20 cm depth) and fully thawed
conditions generally prevailed by mid-June. Vegetation at
the second study mire was dominated by Sphagnum spp.
The site was underlain by permafrost at the time of sample
collection. The soil thaw depth was 22 cm in June and up
to 90 cm in August and September 2006, when it was
considered to represent the active layer depth.

Sampling and In-Situ Measurements

The field campaign was conducted during mid-June, early Au-
gust and the end of September 2006. At each site, three soil
cores were collected using a 60cm long×15cm diameter metal
peat corer that had been rinsed with ethanol and flame treated.
All the cores collected were composed entirely of peat. The
seasonally frozen ground and soil thaw depths and water table
level were measured prior to sampling using a graduated metal
rod. One core was wrapped in aluminium foil (pre-combusted
at 450 °C for 4.5h) and then placed in a �20°C cold room at
the Abisko Research Station. On site and immediately after col-
lection, temperature andmoisture content were measured along
the profile of a second core every ~5cm using a Hanna Check
Temperature probe (Woonsocket, Rhode Island, USA)
(resolution: 0.1 °C; accuracy: ±0.3 °C) and a soil moisture Delta
T HH2 Theta Probe (Cambridge, UK) (accuracy: 1–5%). The
pH of wet peat was measured on core subsamples using
an Orion 250 A pH meter (Vernon Hills, Illinois, USA)
(resolution: 0.01/0.1 pH; accuracy: ±0.02). The third core
was subsampled in the Abisko Research Station for CH4

concentrations and CH4 production potential analysis.

Biomarker Analyses

Sample Preparation and Lipid Extraction.
The frozen cores were transported to the UK for bio-

marker analysis and stored in a �20 °C cold room. Before
subsampling, the cores were defrosted in an incubator at
5 °C. Each core was subsequently cut into four to six
sections along the soil profile, corresponding to the same
Permafrost and Periglac. Process., (2014)
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Figure 1 Map of the Stordalen mire and its surroundings (modified from Malmer et al., 2005; wet areas are prevalently covered by sedge and Sphagnum
mires; dry areas by palsas).
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depth intervals used in CH4 production potential experiments.
The subsampling interval depended on the core length, which
ranged from 22 to 50cm. Each core section was ~10cm in
diameter and ~4cm long for the chosen depths to analyse.
Each sample was freeze-dried, typically for 3days, and ground
to a fine powder in liquid nitrogen using a mortar and pestle.
Approximately 1 g dry weight of the ground soil was

extracted using a modified Bligh and Dyer (1959) method.
Buffered water was prepared by adding 2 g Potassium
dihydrogen phosphate to 300ml of double-distilled water
to yield a 0.05M solution. The pH was then adjusted to
7.2 by the addition of NaOH pellets and the mixture was ex-
tracted three times with 50ml of dichloromethane (DCM).
The monophasic Bligh-Dyer solvent mixture was prepared
in the following proportions by volume: 4:5:10 buffered
water:chloroform:methanol. After the addition of 8ml of
Bligh-Dyer solvent to the sample, the mixture was sonicated
for 15min and then centrifuged at 3200 rpm for 5min. The
supernatant was decanted into a large vial and the extraction
was repeated four times. Addition of 2ml of buffered water
and 2ml of chloroform separated the organic and aqueous
phases and the lower organic layer was removed. The aque-
ous phase was subsequently extracted three times with 2ml
of chloroform. The extracts were combined and activated
Cu turnings were added to remove sulphur. After 24 h, the
extracts were filtered through glass wool and 4μgμl�1 of
androstane and hexadecan-2-ol were added as standards.
The total lipid extract was separated into three fractions

(neutral, acid and highly polar (nominally phospholipids))
using solid-phase extraction with aminopropyl cartridges
(Uppsala, Sweden) (Isolute; NH2, 500mg). Fractions were
eluted sequentially with a 2:1 (vol:vol) DCM:isopropanol
solution, 2 per cent acetic acid in diethyl ether and
Copyright © 2014 John Wiley & Sons, Ltd.
methanol. The neutral fraction was further separated into
apolar (hydrocarbons) and polar (alcohols and ketones)
fractions using alumina flash column chromatography,
eluted using three to four column volumes each of n-
hexane:DCM (9:1, vol:vol) and DCM:methanol (1:2, vol:
vol), respectively. The neutral polar lipid fractions
contained the already partly degraded (loss of head group)
archaeal cell membrane components, archaeol and
hydroxyarchaeol. The phosphorylated head groups of the
intact archaeol phospholipids (PL-Ar) in the highly polar
fraction were cleaved using alkaline hydrolysis (heating with
1ml 0.5M methanolic NaOH for 1h at 70 °C), leading to the
release of the archaeol core lipids. Alcohol moieties in the
neutral polar and saponified phospholipid fractions, such as
archaeol and hydroxyarchaeol, were converted to
trimethylsilyl derivatives by heating with 25μl each of N,
O-bis(trimethylsilyl)trifluoroacetamide and pyridine at 70 °C
for 1h.

Instrumental Analyses and Data Processing.
The neutral polar and saponified phospholipid fractions were

analysed on a Carlo Erba 5300 (Hofheim, Taunus, Germany)
series gas chromatograph (GC) equipped with a flame
ionisation detector and fitted with a fused capillary column
(50m x 0.32mm i.d.) coated with a CP Sil5-CB (Agilent Tech-
nologies, Stockport, Cheshire, UK) (dimethylpolysiloxane)
equivalent. The carrier gas was H2 and the oven temperature
was programmed from 70 to 130°C at 20 °Cmin�1, from
130 to 300°C at 4 °Cmin�1 and finally held at 300°C for
25min. GC-mass spectrometry (GC-MS) was performed using
a Finnigan Trace GC-MS (Hemel Hempstead, UK) with elec-
tron ionisation at 70eV operating in full-scan mode
40–650amu, 1 scan s�1. GC conditions were the same as
Permafrost and Periglac. Process., (2014)
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described above except that He was used as a carrier gas. The
processing of spectra acquired from the GC-MS was con-
ducted using Xcalibur 2.0 software (thermoscientific, Hemel
Hempstead, UK).

Dissolved CH4 Concentrations and CH4 Production

After removal of large root fragments, smaller peat samples
(3 replicates each) from six depths were taken from the soil
cores for both sites using a metal cylinder (2 cm diameter).
The samples were analysed for dissolved CH4 concentration
and for CH4 production potential. For the former, each
sample was placed in a 35ml glass bottle fitted with a butyl
rubber septum and screw cap. The bottle contained 20ml of
10 wt per cent KCl solution that had been acidified to pH ~1
using 6M HCl. The vial headspace gas, representing total
dissolved CH4 in sediment porewater, was analysed as
described in Lupascu et al. (2012) and subsequently
normalised to sample volume and porosity.
CH4 production potential was measured by placing each

subsample in a 35ml glass bottle that was flushed with
oxygen-free nitrogen. The samples were stored in the dark at
4 °C at the Abisko Research Station before being transported
under cool conditions to the UK. The samples were then incu-
bated at 4, 14 and 24°C and headspace gas from the vials was
analysed for CH4 content as described in Lupascu et al. (2012).
RESULTS

In-situ Measurements

The sedge and Sphagnum mires were waterlogged during all
sampling periods, with water table levels at ~2cm above the
ground surface. In June, only the upper 20cm of soil was
thawed at both sites and by August, the sedge mire site was
fully thawed while the Sphagnum site had a permafrost table
at 90cm depth. Mean surface soil temperatures for the field
sites on the days of core collection were 3.4, 11.2, 5.7 °C in
June, August and September, respectively (Figures 2 and 3).
Soil pH was relatively constant with depth at each site,
with lower values at the Sphagnum mire (pH ~4.1 ± 0.2)
compared to the sedge mire (pH ~5.7 ± 0.2).

Intact PL-Ar, Archaeol and Hydroxyarchaeol
Concentrations

Sedge Mire.
Archaeol obtained by saponification of intact PL-Ar but

also from already degraded (loss of head group) archaeal
(Ar) membrane lipids were present in all three cores (June,
August and September) collected from the sedge mire
(Figure 2). The sn2- and sn3- isomers of hydroxyarchaeol
also were present in all cores but were only identified in
their free forms (without head group). Although there are
some variations among sampling periods, archaeal diether
lipid concentrations in both the intact and non-intact forms
Copyright © 2014 John Wiley & Sons, Ltd.
increase with depth in the three cores, with notable increases
in concentration occurring approximately 15, 35 and 27 cm
below the water table level for June, August and September,
respectively. In the core collected in June, phosphorylated
archaeol, sn2- and sn3-hydroxyarchaeol concentrations
(Figure 2; A1 and A3) were very low or below detection
limits in the upper 10cm and concentrations increased at
15cm depth to 3600 and 160ngg�1, respectively. Similarly,
in the core collected in August (Figure 2; B1 and B3), both
phosphorylated archaeol and sn2-hydroxyarchaeol concentra-
tions were low at shallow depths (0 and 74ngg�1, respec-
tively) and increased with depth (4000 and 780ngg�1,
respectively). In contrast, sn3-hydroxyarchaeol was detected
only in the upper part of the August core at a maximum
concentration of 190ngg�1 at 18cmdepth. The phosphorylated
archaeol and hydroxyarchaeol concentrations in the September
core (Figure 2; C1 and C3) exhibited less depth-dependent
variations: archaeol and sn2- and sn3-hydroxyarchaeol concen-
trations increased to maxima of 6400, 160 and 120ngg�1, re-
spectively, at 26 cm depth and then decreased slightly. The
concentration of non-intact phospholipid archaeol (Ar) was
lower than that of archaeol occurring in the phosphorylated
form (<1000ng g�1) but exhibited similar depth profiles
with the exception of June.

Sphagnum Mire.
Phosphorylated archaeol, non-intact PL archaeol (Ar) and

sn2-hydroxyarchaeol were present only in cores collected in
August and September. Sn3-hydroxyarchaeol was not
detected in the cores. In the June core (Figure 3; A1 and
A3), the shallow thawed layer extended only to approxi-
mately 20cm depth and no diether lipids were detected in
the shallow peat. In the August core (Figure 3; B1 and B3),
concentrations of the two archaeal biomarkers were low in
the top 26 cm (<160ngg�1 for phosphorylated archaeol and
sn2- hydroxyarchaeol was absent) but increased significantly
at 35 cm depth (~2200 and 170ngg�1, respectively). Phos-
phorylated archaeol and sn2-hydroxyarchaeol concentrations
in the September core (Figure 3; C1 and C3) again were
low in the upper 18 and 30cm, respectively, but increased at
depth to concentrations greater than maximum values
measured in August. The highest concentrations of archaeol
and sn2-hydroxyarchaeol occurred at 38 cm depth (3500 and
400ng g�1, respectively). Similar to the sedge mire, concen-
trations of diether lipids detected (especially phosphorylated
archaeol) increased over the summer; however, the increase
was largely confined to horizons below 20 cm depth. Non-
intact PL archaeol (Ar) was present in very low concentra-
tions compared to the intact form (<300ng g�1) and was
observed only in samples collected from depths >30 cm.

CH4 Concentrations and Production Potential

Concentrations of dissolved CH4 were similar between the
sedge (~50–215μmol l�1; Figure 2; A2, B2 and C2) and the
Sphagnum (~25–265μmol l�1; Figure 3; A2, B2 and C2)
mires. Depth profiles for both sites and all months generally
Permafrost and Periglac. Process., (2014)



Figure 2 Archaeol from intact (PL-Ar) and from already partly degraded (Ar; core lipids after loss of head group) phospholipid archaeols (A1, B1, C1) and
sn2- and sn3-hydroxyarchaeol (A3, B3, C3) concentration depth profiles for the sedge site in the months of June, August and September. Also shown are CH4

concentration and temperatures (A2, B2, C2) for the same months (dashed lines represent the water table at the time of sampling, dotted lines represent the
ground surface and the solid line represents the frozen ground table; * shallow sample at 5 cm depth in August is absent owing to a data error).

Methanogen Biomarkers in the Discontinuous Permafrost Zone
were characterised by an increase in CH4 concentration with
depth (Figures 2 and 3; A2, B2 and C2). During the summer,
CH4 concentrations decreased from June to August and then
increased in September.
Full details of the CH4 production potential experiments are

reported in Lupascu et al. (2012) and only select aspects of that
data-set are selected here in the context of biomarker data.
Incubation of core subsamples in the absence of oxygen dem-
onstrated that CH4 production potential varied with tempera-
ture, peatland trophic status and soil depth. In general, the
increase in CH4 production in response to increased
Copyright © 2014 John Wiley & Sons, Ltd.
temperature was greater in the sedge mire (Figure 4a; maxi-
mum rate 142.3μg CH4 d

�1 g�1) compared to the Sphagnum
mire (Figure 4b; maximum rate 44.4μg CH4 d

�1 g�1).
The CH4 production potential in the sedge mire decreased

markedly with increasing depth in all sampling months
(Figure 4a). The Sphagnum mire displayed similar profiles
between months, but CH4 production rates were always
lower than in the sedge mire for the same incubation
temperatures (Figure 4b) and rate variations with depth were
less pronounced (mean differences of 7.4μg CH4 d

�1 g�1 at
14 °C and 30.3μg CH4 d

�1 g�1 at 24 °C).
Permafrost and Periglac. Process., (2014)



Figure 3 Archaeol from intact (PL-Ar) and from already partly degraded (Ar; core lipids after loss of head group) phospholipid archaeols (A1, B1, C1) and
sn2- and sn3-hydroxyarchaeol (A3, B3, C3) concentration depth profiles for the Sphagnum site in the months of June, August and September. Also shown are
CH4 concentration and temperatures (A2, B2, C2) for the same months (dashed lines represent the water table at the time of sampling, dotted lines represent the

ground surface and the solid line represents the permafrost table).
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DISCUSSION

Quantification of archaeal lipids in peat provides informa-
tion about labile lipids derived from presumably living
biomass (phospholipids) or a combination of living
organisms and fossil biomass (core lipids). However, gly-
cosidically bound diethers (glycolipids) were not quanti-
fied, which can represent an important fraction of
archaeal lipids (e.g. Koga et al., 1998a, 1998b; Lim
et al., 2012). Thus, we focus primarily on variations in
phosphorylated archaeol concentrations as an indicator
Copyright © 2014 John Wiley & Sons, Ltd.
of living methanogenic Archaea and we do not attempt
to directly calculate methanogen biomass. Furthermore,
owing to the long-term stability of core (or simple)
archaeal lipids (Pease et al., 1998), the interpretation of
seasonal patterns also focuses on intact phosphorylated
archaeal lipids. For all lipid forms, we examined depth-
and site-related variations, specifically the differences in
archaeal biomarker concentrations in shallow CH4-free soil
versus deeper peat, and differences in methanogen
biomarker abundances between sites which may result from
variations in plant assemblages.
Permafrost and Periglac. Process., (2014)



Figure 4 CH4 production potential of dry weight at 4, 14 and 24 °C in the (a) sedge and (b) Sphagnum mires (modified from Lupascu et al., 2012).

Methanogen Biomarkers in the Discontinuous Permafrost Zone
The Presence of Archaeal Lipids in Low Arctic Soils

Phosphorylated archaeol, archaeol core lipid and sn2-
hydroxyarchaeol were detected in both peatland types and
all cores, except for shallow cores collected in June from
the Sphagnum sites. In contrast, the less common isomer
sn3-hydroxyarchaeol was detected only at the sedge site.
Although archaeal diethers are common in a range of
environments (Asakawa et al., 1998; DeLong et al., 1998;
Hinrichs et al., 1999; Pancost et al., 2000, 2001), we
interpret their source to be primarily methanogens in this
setting, which is consistent with the widespread occurrence
of archaeal diethers, especially hydroxyarchaeol, in cultured
methanogens (Sprott et al., 1990; Koga et al., 1993).
Archaeol has been reported in halophiles, thermophiles
and methanogens and is the most common and ubiquitous
compound among the archaeal lipids (Koga et al., 1998a,
1998b). The biomarker sn2-hydroxyarchaeol occurs pre-
dominantly in methanogenic Archaea, and especially those
of the order Methanosarcinales (Sprott et al., 1993; Koga
et al., 1998a), and anaerobic methanotrophic Archaea (e.g.
Copyright © 2014 John Wiley & Sons, Ltd.
Hinrichs et al., 1999). Organisms known to contain sn3-
hydroxyarchaeol include Methanococcus voltae (Sprott
et al., 1993) and Methanolobus bombayensis (S. Schouten,
personal communication), both of which also produce sn2-
hydroxyarchaeol, and Methanosaeta concilii, which
predominantly produces sn3-hydroxyarchaeol (Ferrante
et al., 1988).

The inference that archaeal diethers derive from
methanogens is consistent with previous microbiological
work in which fluorescence in-situ hybridisation (Kobabe
et al., 2004) or 16S rRNA and methyl coenzyme M
reductase gene sequences have been used to profile the
archaeal community structure in northern permafrost
peatlands (Basiliko et al., 2003; Kotsyurbenko et al.,
2004; Høj et al., 2006; Ganzert et al., 2007; Barbier et al.,
2012). Each of these investigations reported that
methanogens were the main population of Archaea present
in permafrost peatlands. Therefore, it is likely that the
archaeol, both in its phosphorylated and non-intact PL form,
and hydroxyarchaeol present in the Abisko cores also derive
from methanogens.
Permafrost and Periglac. Process., (2014)
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Although all of the diethers likely represent a combina-
tion of living and dead biomass, we suggest that the phos-
phorylated components reflect the former. By analogy
with the polar acyl ester lipids of bacteria, which lose polar
head groups via enzymatic hydrolysis upon cell death or cell
lysis (White et al., 1979), intact polar ether lipids have been
argued to indicate the presence of living or potentially
viable biomass rather than fossil archaeal biomass (Sturt
et al., 2004; Biddle et al., 2006). However, we do note that
ether-bound archaeal IPLs are more stable than ester-bound
bacterial IPLs as observed in an experiment over a period of
100 days (Logemann et al., 2011). Intriguingly, phosphory-
lated archaeol and sn2-hydroxyarchaeol exhibit a similar
pattern along the soil profiles and between the different
months (with the exception of the sedge mire in September),
suggesting a similar source and behaviour. This could arise
from the labile nature of the sn2-hydroxyarchaeol (Nichols
et al., 1993), such that it also can be utilised as a marker
for living methanogen biomass.
Archaeal Biomarker Concentrations – Variations
among Sites and Depths

The sedge and Sphagnum mires, which were both
characterised by relatively shallow water tables, exhibit
significantly different phosphorylated archaeol abundances
(p <0.05, student t-test) and depth profiles. It is likely that
this reflects differences in plant cover because plant species
differ both in litter chemistry and root exudates (Crow and
Wieder, 2005; Meier and Bowman, 2008), and thus affect
below-ground biota. This result is further corroborated by
the CH4 production profiles (Figure 4) and emissions
(Bäckstrand et al., 2008), which were higher at the sedge
than the Sphagnum site.
The large difference in archaeol concentrations between

the shallow and deeper samples for both sites likely reveals
a difference between permanent (deep) and intermittent
(shallow) anoxic conditions related to oxygen diffusion
(Kiener and Leisinger, 1983). Although the water table level
was near the ground surface for all three sampling months,
the increase in methanogen biomarker concentrations
occurred at ~10 cm (or deeper), suggesting that biomass is
highest under more persistent anoxic conditions. Archaeol
concentrations bear some resemblance to dissolved non-
purgeable organic carbon levels rather than the organic
carbon content of peat (Lupascu et al., 2012), which high-
lights the influence of labile organic carbon sources on
methanogen populations (Liu et al., 2011).
These distributions of methanogens are similar in general

to those documented in other studies, although we note that
previous investigations utilising archaeol as a biomarker
proxy for methanogenic communities have employed a
diversity of approaches. Most have focused on analysis of
either free or phospholipid archaeol (Fritze et al., 1999;
Pancost et al., 2011; Bischoff et al., 2013) and only a few
studies have examined archaeol bound by glycosidic
headgroups (Lim et al., 2012). Other investigations of
Copyright © 2014 John Wiley & Sons, Ltd.
archaeal lipid biomarkers in high-latitude permafrost areas
have focused on the collective quantification of intact
phospolipid ether lipids (PLEL: isoprenoidal di- and tetra-
ethers from glycerol backbones (archaeols and caldarchaeols,
respectively) or more complex polyols) to track active
archaeal populations (Wagner et al., 2005, 2007).

In an acidic mire near Umea (Sweden), where the water
table level was near the surface, Fritze et al. (1999) ob-
served a lower concentration of phosphorylated archaeol
and archaeol core lipids (~10.2 ± 3.1 ng g�1) than reported
here. Similar to our sites, the peak in archaeol concentration
occurred below the surface, at 20 cm depth. Pancost et al.
(2011) did not detect archaeol (phosphorylated archaeol
and archaeol core lipids) in surface sediments (<10 cm) of
several European peatlands where the peak concentration
of archaeol occurred 20 to 50 cm below the water table
level. Concentrations of phosphorylated archaeol and
archaeol core lipids at two sites in Ireland and the UK were
greater than at Abisko, whereas concentrations at mires in
Germany and Finland were similar. In other terrestrial
settings that were not water saturated, Lim et al. (2012)
reported lower concentrations than the ones that we mea-
sured in Abisko peat, with values of 300±200 ng g�1

(phosphorylated archaeol, archaeol core lipids and glyco-
lipids) in a moist grassland soil in the UK. Bischoff et al.
(2013) reported archaeol concentrations (phosphorylated
archaeol and archaeol core lipids) ranging from 0.3 to
67 ng g�1 in permafrost soil of the Lena Delta, Siberia.

Studies from other terrestrial settings also report that
ether lipid concentrations, including both diether and
tetraether lipids, increase with depth at or below the water
table (Weijers et al., 2004; Wagner et al., 2005, 2007). In
the majority of the studies, water table depth, and therefore
O2 concentration, likely represents one of the main factors
influencing the distribution of archaeol in the subsurface.
The increase in methanogen biomarker concentrations
several centimetres below the water table level is consistent
with previous studies that have reported maxima in
methanogen abundance (Fritze et al., 1999; Pancost et al.,
2011) and activity (Daulat and Clymo, 1998) at that depth
in peat soil. However, an extensive root system also may
inhibit growth of a methanogen population in the surface
layer because of rhizosphere input of O2.
Seasonal Trend

Phosphorylated archaeol concentrations increased markedly
during the summer months and peaked in September. A
similar trend occurred for hydroxyarchaeol concentrations
in the Sphagnum mire but not the sedge mire, where the
highest concentrations were measured in August. Collec-
tively, these observations are consistent with an increase
in methanogen population during summer. Previous work
has shown that CH4 emissions are highest at these sites
in August (Bäckstrand et al., 2008), coincident with the
highest air and soil temperatures. Our data appear to docu-
ment an expanding methanogen community that parallels
Permafrost and Periglac. Process., (2014)
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increased in-situ CH4 production; however, community
abundance continued to increase late in summer after the
peak period of CH4 flux. Although a greater methanogen
population is present, lower CH4 emissions in September
probably are linked to plant senescence and a reduction in
the ability of vascular plants to function as conduits for
export of CH4 from soil to the atmosphere (Joabsson
et al., 1999; Heikkinen et al., 2002).
Methanogen Biomarker and CH4 Production Potential

Methanogen biomarker abundance and dissolved CH4 con-
centration (Figures 2 and 3) generally increase with depth in
both the sedge and Sphagnum mires at Abisko, although
over the depth range investigated we could not determine
whether methanogen biomarker and CH4 concentrations
eventually decoupled. In contrast, CH4 production potential
(Figure 4) decreased with depth in the sedge and Sphagnum
mires, indicating that factors controlling production
potential are more complex than methanogen abundance
alone. However, it is important to note that CH4 production
potential in our short-term incubations represents the
capacity of in-situ microbial populations collectively to
metabolise available labile substrates under induced anoxic
conditions at different temperatures (C. Treat et al., 2014).
As short-term substrate pools are depleted, the lack of living
plants and thus absence of new root exudates limit the
capacity for significant growth of microbial communities.
In contrast, different controls regulate in-situ dissolved
CH4 concentration (e.g. the collective effects of production,
diffusion, consumption and transport) and methanogen bio-
marker abundance (e.g. substrate availability, temperature,
water content and oxygen availability).
The high CH4 production potential in shallow peat,

despite a low initial abundance of methanogens, suggests that
high concentrations of labile organic matter and induced
anoxic conditions drive a rapid increase in methanogenesis
under experimental conditions. This result is opposite to
in-situ conditions where despite the presence of labile organic
matter, porewater CH4 concentrations are low and the inferred
methanogen population is small. This difference likely results
from higher levels of dissolved oxygen in surface water
(Elberling et al., 2011; Estop-Aragonés et al., 2012)
inhibiting methanogen growth (Knorr et al., 2009).
CH4 production potential was much lower in peat

collected from deeper horizons (Figure 4). The presence of
abundant archaeal biomarkers for living methanogens in
deeper soils suggests that production at depth was not
limited by a lack of methanogens but rather by organic mat-
ter recalcitrance and possibly lower temperatures, which
collectively inhibit metabolic activities of methanogens
and other anaerobic microorganisms. In contrast to the
incubation experiments, CH4 production in situ is main-
tained by the secretion of labile organic carbon especially
at the sedge site where the dominant vascular plant,
E. angustifolium, is associated with the release of significant
quantities of root exudates in many types of mire (Joabsson
Copyright © 2014 John Wiley & Sons, Ltd.
and Christensen, 2001; Christensen et al., 2004). On the
other hand in the Sphagnum site, the lack of a well-
developed rhizoid system results in little labile organic
carbon being released to anaerobic peat layers (Galand
et al., 2005), leading to a smaller methanogen population
and lower CH4 production potential compared to the sedge
site. The lower pH (~4.1 ±0.2) at the Sphagnum site com-
pared to the sedge site (~5.7 ±0.2) can further explain these
differences because experimental manipulation of soil pH
has demonstrated that excess acidity diminishes CH4

production in peatlands (Williams and Crawford, 1984;
Dunfield et al., 1993; Kotsyurbenko et al., 2004).

Our results are consistent with the findings of Wagner
et al. (2005), who reported the absence of a relationship
between archaeal PLEL concentrations and CH4 production
under in-situ conditions. However, a stronger relationship
was observed between archaeal PLEL concentration and
CH4 production potential when acetate or hydrogen was
added, suggesting that methanogenesis was substrate lim-
ited (Wagner et al., 2005). Although organic C is abundant
in permafrost soils, the implication of these observations is
that much of the organic matter is resistant to biological
degradation under in-situ conditions.
CONCLUSIONS

This study shows that a constant high water table level and
differences in vegetation cover and pH are important factors
influencing the depth distribution of the methanogenic com-
munity in the Low Arctic peatlands at Abisko (Sweden), as
monitored by phosphorylated archaeol, core archaeol and
hydroxyarchaeol concentrations and profiles. Decoupling
of methanogen abundance from CH4 production potential
during the summer months suggests that the availability of
labile organic carbon also exerts a key control on the rates
of methanogenesis and distribution.

Future work should also consider glycosidically bound
archaeol as well as phosphorylated archaeol and sn2-
hydroxyarchaeol as proxies for the characterisation of
methanogen biomass within permafrost soils. This can lead
to a better understanding of the incidence and prevalence of
methanogenesis as a result of future changes in environmen-
tal conditions and their potential for CH4 production.
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